
Decent Labs -
Fractal Contracts
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: April 17th, 2023 - April 28th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

2 RISK METHODOLOGY 9

2.1 Exploitability 10

2.2 Impact 11

2.3 Severity Coefficient 13

2.4 SCOPE 15

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16

4 FINDINGS & TECH DETAILS 17

4.1 (HAL-01) LACK OF DISABLEINITIALIZERS CALL TO PREVENT UNINITIAL-

IZED CONTRACTS - INFORMATIONAL(1.7) 19

Description 19

Code Location 19

BVSS 21

Recommendation 21

Remediation Plan 21

4.2 (HAL-02) SINGLE STEP OWNERSHIP TRANSFER PROCESS - INFORMA-

TIONAL(1.7) 22

Description 22

Code Location 22

BVSS 23

1

Recommendation 23

Remediation Plan 23

4.3 (HAL-03) MISSING ACCESS CONTROL IN EVENT EMITTING FUNCTIONS -

INFORMATIONAL(1.0) 24

Description 24

Code Location 24

BVSS 25

Recommendation 25

Remediation Plan 25

4.4 (HAL-04) UNUSED VARIABLES IN LINEARERC20VOTING STRATEGY - IN-

FORMATIONAL(0.0) 26

Description 26

Code Location 26

BVSS 28

Recommendation 28

Remediation Plan 28

5 MANUAL TESTING 29

5.1 INTRODUCTION 30

5.2 EXAMPLE SCENARIOS 30

EXECUTED PROPOSAL 30

FAILED PROPOSAL 31

VOTING TWICE ON THE SAME PROPOSAL 31

DELEGATING VOTES 32

6 AUTOMATED TESTING 32

6.1 STATIC ANALYSIS REPORT 34

Description 34

Results 34

2

6.2 AUTOMATED SECURITY SCAN 36

Description 36

Results 36

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 04/10/2023 István Böhm

0.2 Document Updates 04/19/2023 István Böhm

0.3 Document Updates 04/24/2023 Roberto Reigada

0.4 Document Updates 04/28/2023 István Böhm

0.5 Draft Review 04/28/2023 Ataberk Yavuzer

0.6 Draft Review 04/28/2023 Piotr Cielas

0.7 Draft Review 04/28/2023 Gabi Urrutia

1.0 Remediation Plan 05/03/2023 István Böhm

1.1 Remediation Plan Review 05/04/2023 Ataberk Yavuzer

1.2 Remediation Plan Review 05/04/2023 Piotr Cielas

1.3 Remediation Plan Review 05/05/2023 Gabi Urrutia

4

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Ataberk Yavuzer Halborn Ataberk.Yavuzer@halborn.com

István Böhm Halborn Istvan.Bohm@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Ataberk.Yavuzer@halborn.com
mailto:Istvan.Bohm@halborn.com
mailto:Roberto.Reigada@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

The Decent Labs’s Fractal Contracts is a collection of smart contracts

that allow for composable governance.

Decent Labs engaged Halborn to conduct a security audit on their smart

contracts beginning on April 17th, 2023 and ending on April 28th, 2023.

The security assessment was scoped to the smart contracts provided in

the decent-dao/fractal-contracts GitHub repository. Commit hashes and

further details can be found in the Scope section of this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided 9 days for the engagement and assigned

two full-time security engineers to audit the security of the smart

contracts in scope. Security engineers are blockchain and smart contract

security experts with advanced penetration testing and smart contract

hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of the audits is to:

• Identify potential security issues within the smart contracts

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which have been addressed and acknowledged by Decent

Labs.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/decent-dao/fractal-contracts/

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet analysis (Brownie, Foundry Remix IDE)

8

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 Exploitability

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 Impact

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 Severity Coefficient

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

13

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

14

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

Code repositories:

1. Fractal Contracts:

• Repository: decent-dao/fractal-contracts

• Initial Commit ID: e3c4132

• LinearERC20 Wrapped Voting Update Commit ID: f113f23

• Fixed Commit ID: 54290ad

Out-of-scope:

- Third-party libraries and dependencies.

- Economic attacks.

15

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/decent-dao/fractal-contracts/
https://github.com/decent-dao/fractal-contracts/commit/e3c413283c4ef1017935c32f3d7f84a1c0430884
https://github.com/decent-dao/fractal-contracts/commit/f113f23038feb75c9219a58244c5e47739b0e3ee
https://github.com/decent-dao/fractal-contracts/commit/54290ad5b67a2b095e4402bf1d19a4f0bc4c384e

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 4

16

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF DISABLEINITIALIZERS CALL TO
PREVENT UNINITIALIZED CONTRACTS

Informational
(1.7)

SOLVED - 05/03/2023

SINGLE STEP OWNERSHIP TRANSFER
PROCESS

Informational
(1.7)

ACKNOWLEDGED

MISSING ACCESS CONTROL IN EVENT
EMITTING FUNCTIONS

Informational
(1.0)

ACKNOWLEDGED

UNUSED VARIABLES IN
LINEARERC20VOTING STRATEGY

Informational
(0.0)

ACKNOWLEDGED

17

EX
EC

UT
IV

E
OV

ER
VI

EW

18

FINDINGS & TECH
DETAILS

4.1 (HAL-01) LACK OF
DISABLEINITIALIZERS CALL TO PREVENT
UNINITIALIZED CONTRACTS -
INFORMATIONAL (1.7)

Description:

It was identified that the initializer functions are not disabled in

the Fractal implementation contracts. Uninitialized contracts can be

initialized by someone else to take over them.

In the latest version (4.8.0), this is done by calling the

_disableInitializers function in the constructor.

Note that the Fractal contracts are designed to be deployed using the ERC-

1167 Minimal Proxy Contract (Cloning) standard, where the implementation

contracts are only utilized through the proxies. However, it is still

considered to be a best practice to disable the initializer functions to

prevent any accidental misuse.

Code Location:

For example, before initialization, the setUp function of an Azorius

contract can be called by anyone to take over the contract:

Listing 1: contracts/azorius/Azorius.sol

105 function setUp(bytes memory initializeParams) public override

ë initializer {

106 (

107 address _owner ,

108 address _avatar ,

109 address _target ,

110 address [] memory _strategies , // enabled

ë BaseStrategies

111 uint32 _timelockPeriod , // initial

ë timelockPeriod

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
https://eips.ethereum.org/EIPS/eip-1167
https://eips.ethereum.org/EIPS/eip-1167

112 uint32 _executionPeriod // initial

ë executionPeriod

113) = abi.decode(

114 initializeParams ,

115 (address , address , address , address[], uint32 ,

ë uint32)

116);

117 __Ownable_init ();

118 avatar = _avatar;

119 target = _target;

120 _setUpStrategies(_strategies);

121 transferOwnership(_owner);

122 _updateTimelockPeriod(_timelockPeriod);

123 _updateExecutionPeriod(_executionPeriod);

124

125 emit AzoriusSetUp(msg.sender , _owner , _avatar , _target);

126 }

The Azorius contract in the test files is deployed through a two-step

process. The first step deploys the contract, while the second step

initializes it. However, this approach creates an opportunity for a

malicious user to frontrun the second step and initialize the contract

themselves, effectively taking control of it.

Listing 2: test/test/Azorius-LinearERC20Voting.test.ts (Lines 151,165)

150 azorius = await new Azorius__factory(deployer).deploy ();

151

152 const azoriusSetupData = abiCoder.encode(

153 ["address", "address", "address", "address []", "uint32", "

ë uint32"],

154 [

155 gnosisSafeOwner.address ,

156 gnosisSafe.address ,

157 gnosisSafe.address ,

158 [],

159 60, // timelock period in blocks

160 60, // execution period in blocks

161]

162);

163

164 await azorius.setUp(azoriusSetupData);

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:M/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (1.7)

Recommendation:

Consider adding a constructor to the initializable contracts and calling

the _disableInitializers function in them:

Listing 3: Initialization Example

1 /// @custom:oz -upgrades -unsafe -allow constructor

2 constructor () {

3 _disableInitializers ();

4 }

Remediation Plan:

SOLVED: The Decent Labs team solved the issue in commit 54290ad by modi-

fying the constructors to automatically mark the contracts as initialized

when they are deployed.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/decent-dao/fractal-contracts/commit/54290ad5b67a2b095e4402bf1d19a4f0bc4c384e

4.2 (HAL-02) SINGLE STEP OWNERSHIP
TRANSFER PROCESS - INFORMATIONAL
(1.7)

Description:

It was identified that ownable Fractal contracts are inherited from

OpenZeppelin’s OwnableUpgradeable contract. Ownership of the contracts

that are inherited from the OwnableUpgradeable contract can be lost, as

their ownership can be transferred in a single-step process. The address

that the ownership is changed to should be verified to be active or

willing to act as the owner.

Code Location:

Single step ownership transfer process in the OwnableUpgradeable contract:

Listing 4: node_modules/@openzeppelin/contracts-

upgradeable/access/OwnableUpgradeable.sol

74 function transferOwnership(address newOwner) public virtual

ë onlyOwner {

75 require(newOwner != address (0), "Ownable: new owner is the

ë zero address");

76 _transferOwnership(newOwner);

77 }

78

79 /**

80 * @dev Transfers ownership of the contract to a new account

ë (`newOwner `).

81 * Internal function without access restriction.

82 */

83 function _transferOwnership(address newOwner) internal virtual

ë {

84 address oldOwner = _owner;

85 _owner = newOwner;

86 emit OwnershipTransferred(oldOwner , newOwner);

87 }

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:M/C:N/I:N/A:L/D:N/Y:N/R:N/S:U (1.7)

Recommendation:

Consider using the Ownable2StepUpgradeable library over the

OwnableUpgradeable library.

Alternatively, it is recommended to split the current ownership transfer

process into two steps. For example, the first one is to call the

requestTransferOwnership function, which proposes a new owner for the

protocol, and the second, the new owner accepts the proposal by calling

the acceptsTransferOwnership function.

Note that for contracts intended to be owned by other contracts, addi-

tional logic is required to be implemented in the parent contracts to be

compatible with the two-step ownership transfer process.

Remediation Plan:

ACKNOWLEDGED: The Decent Labs team acknowledged this finding. Contract

owners in the Azorius system are intended to be other contracts, and

implementing a two-step ownership process on the parent contract would

not be feasible.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol

4.3 (HAL-03) MISSING ACCESS CONTROL
IN EVENT EMITTING FUNCTIONS -
INFORMATIONAL (1.0)

Description:

It was identified that the updateDAOName and declareSubDAO functions

within the FractalRegistry contract, as well as the updateValues function

in the KeyValuePairs contract, can be called by anyone. Although these

functions do not alter the state variables of the contracts directly,

this behavior places the responsibility to validate the msg.sender to the

services listening to these events, A malicious actor may also be able

to disrupt the services by generating large amounts of events.

Code Location:

Listing 5: fractal-contracts/contracts/FractalRegistry.sol

15 function updateDAOName(string memory _name) external {

16 emit FractalNameUpdated(msg.sender , _name);

17 }

18

19 /** @inheritdoc IFractalRegistry */

20 function declareSubDAO(address _subDAOAddress) external {

21 emit FractalSubDAODeclared(msg.sender , _subDAOAddress);

22 }

Listing 6: fractal-contracts/contracts/KeyValuePairs.sol

17 function updateValues(string [] memory _keys , string [] memory

ë _values) external {

18

19 uint256 keyCount = _keys.length;

20

21 if (keyCount != _values.length)

22 revert IncorrectValueCount ();

23

24 for (uint256 i; i < keyCount;) {

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

25 emit ValueUpdated(msg.sender , _keys[i], _values[i]);

26 unchecked {

27 ++i;

28 }

29 }

30 }

BVSS:

AO:A/AC:L/AX:H/C:N/I:L/A:N/D:N/Y:N/R:N/S:C (1.0)

Recommendation:

It is recommended to implement access control mechanisms for the functions

to ensure that only authorized callers can emit events.

Remediation Plan:

ACKNOWLEDGED: The Decent Labs team acknowledged this finding. The msg.

sender of the events will be validated off-chain.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.4 (HAL-04) UNUSED VARIABLES IN
LINEARERC20VOTING STRATEGY -
INFORMATIONAL (0.0)

Description:

In the Azorius contract’s submitProposal function, the values of the

txHashes and _data variables are passed to the configured voting strat-

egy’s initializeProposal call. However, it was identified that these

values are not used in the LinearERC20Voting contract, which is currently

the only voting strategy of the Fractal Contracts. Simplifying the code

can reduce the contract’s size, leading to potential gas cost savings and

decreased complexity.

Code Location:

The values of the txHashes and _data variables passed to the configured

voting strategy’s initializeProposal call:

Listing 7: contracts/azorius/Azorius.sol (Lines 149-161,169)

139 function submitProposal(

140 address _strategy ,

141 bytes memory _data ,

142 Transaction [] calldata _transactions ,

143 string calldata _metadata

144) external {

145 if (! isStrategyEnabled(_strategy)) revert StrategyDisabled

ë ();

146 if (! IBaseStrategy(_strategy).isProposer(msg.sender))

147 revert InvalidProposer ();

148

149 bytes32 [] memory txHashes = new bytes32 [](_transactions.

ë length);

150 uint256 transactionsLength = _transactions.length;

151 for (uint256 i; i < transactionsLength;) {

152 txHashes[i] = getTxHash(

153 _transactions[i].to ,

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

154 _transactions[i].value ,

155 _transactions[i].data ,

156 _transactions[i]. operation

157);

158 unchecked {

159 ++i;

160 }

161 }

162

163 proposals[totalProposalCount]. strategy = _strategy;

164 proposals[totalProposalCount]. txHashes = txHashes;

165 proposals[totalProposalCount]. timelockPeriod =

ë timelockPeriod;

166 proposals[totalProposalCount]. executionPeriod =

ë executionPeriod;

167

168 IBaseStrategy(_strategy).initializeProposal(

169 abi.encode(totalProposalCount , txHashes , _data)

170);

These values are not used in the initializeProposal function of the

LinearERC20Voting contract:

Listing 8: contracts/azorius/LinearERC20Voting

113 function initializeProposal(bytes memory _data) external

ë virtual override onlyAzorius {

114 uint32 proposalId = abi.decode(_data , (uint32));

115 uint32 _votingEndBlock = uint32(block.number) +

ë votingPeriod;

116

117 proposalVotes[proposalId]. votingEndBlock = _votingEndBlock

ë ;

118 proposalVotes[proposalId]. votingStartBlock = uint32(block.

ë number);

119

120 emit ProposalInitialized(proposalId , _votingEndBlock);

121 }

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Consider reviewing the function and removing any unnecessary functional-

ities.

Remediation Plan:

ACKNOWLEDGED: The Decent Labs team acknowledged this finding. The current

logic is an intentional choice to enable compatibility with different

governance extensions in the future. Added additional documentation to

the source code on this behavior in commit f113f23.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/decent-dao/fractal-contracts/commit/f113f23038feb75c9219a58244c5e47739b0e3ee

29

MANUAL TESTING

5.1 INTRODUCTION

Halborn conducted a comprehensive manual assessment of the smart contracts

in scope in a local test environment, examining them for potential logic

flaws and vulnerabilities. The Fractal contracts were deployed in a local

Foundry test environment to facilitate this evaluation.

5.2 EXAMPLE SCENARIOS

EXECUTED PROPOSAL:

The state changes of a proof of concept “send one ether” proposal are

inspected from the start of the proposal to its successful execution:

30

MA
NU

AL
TE

ST
IN

G

FAILED PROPOSAL:

Without enough upvotes until expiration, the same proposal failed, and

the transaction did not execute:

VOTING TWICE ON THE SAME PROPOSAL:

The audit also included manual testing of the strategies. For example,

it verified that users cannot vote twice with the same account:

31

MA
NU

AL
TE

ST
IN

G

DELEGATING VOTES:

The delegation of voting power underwent testing as well. It was ob-

served that if user2 delegated their voting tokens before the proposal

submission, they were still able to execute the voting function without

any error. However, their action did not change the voting position, and

user3 was able to cast a vote using both their tokens and those previously

delegated by user2:

It was also verified that delegating of voting tokens after the submission

of the proposal did not affect the voting:

32

MA
NU

AL
TE

ST
IN

G

33

AUTOMATED TESTING

6.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them

correctly into their abis and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Results:

contracts/ERC20Claim.sol

contracts/ERC20FreezeVoting.sol

contracts/FractalModule.sol

contracts/KeyValuePairs.sol

34

AU
TO

MA
TE

D
TE

ST
IN

G

contracts/MultisigFreezeGuard.sol

contracts/VotesERC20.sol

contracts/azorius/Azorius.sol

contracts/azorius/BaseStrategy.sol

As a result of the tests carried out with the Slither tool, some results

were obtained and these results were reviewed by Halborn. Based on the

results reviewed, vulnerabilities were determined to be false positives

and these results were not included in the report.

35

AU
TO

MA
TE

D
TE

ST
IN

G

6.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers in

order to locate any vulnerabilities.

Results:

contracts/ERC20Claim.sol

contracts/MultisigFreezeGuard.sol

contracts/BaseFreezeVoting.sol

contracts/ERC20FreezeVoting.sol

36

AU
TO

MA
TE

D
TE

ST
IN

G

contracts/FractalModule.sol

contracts/AzoriusFreezeGuard.sol

contracts/MultisigFreezeVoting.sol

contracts/azorius/LinearERC20Voting.sol

contracts/azorius/Azorius.sol

The findings obtained as a result of the MythX scan were examined, and

the findings were not included in the report because they were false

positive.

37

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	Exploitability
	Impact
	Severity Coefficient
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	MANUAL TESTING
	INTRODUCTION
	EXAMPLE SCENARIOS
	EXECUTED PROPOSAL
	FAILED PROPOSAL
	VOTING TWICE ON THE SAME PROPOSAL
	DELEGATING VOTES

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results

	AUTOMATED SECURITY SCAN
	Description
	Results

